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Using a solvable model, the two-dimensional two-component plasma, we study
a Coulomb gas confined in a disk and in an annulus with boundaries that can
adsorb some of the negative particles of the system. We obtain explicit analytic
expressions for the grand potential, the pressure and the density profiles of the
system. By studying the behavior of the disjoining pressure we find that without
the adsorbing boundaries the system is naturally unstable, while with attractive
boundaries the system is stable because of a positive contribution from the
surface tension to the disjoining pressure. The results for the density profiles
show the formation of a positive layer near the boundary that screens the
adsorbed negative particles, a typical behavior in charged systems. We also
compute the adsorbed charge on the boundary and show that it satisfies a
certain number of relations, in particular an electro-neutrality sum rule.

KEY WORDS: Coulomb systems; two-component plasma; adsorbing bound-
aries; soap films and bubbles; micelles and vesicles; disjoining pressure; charge
density.

1. INTRODUCTION

In this paper we study the classical (i.e., non-quantum) equilibrium statis-
tical mechanic properties of confined Coulomb systems with adsorbing
boundaries. A Coulomb system is a system of charged particles interacting
through the Coulomb potential. There are several interesting realizations
of Coulomb systems with several applications such as plasmas, electrolytes,
colloidal suspensions, etc. In the present paper we are interested in the case
where the Coulomb system is confined with boundaries that can attract
and adsorb some particles of the system. Our study of this kind of systems



will be done using a solvable model of Coulomb system: the symmetric two-
dimensional two-component plasma, a system of two kind of oppositely
charged particles ± q at thermal equilibrium at an inverse temperature
b=(kBT)−1. The classical equilibrium statistical mechanics of the system
can be exactly solved when bq2=2.

One can think of several examples where the present situation of
Coulomb systems confined with adsorbing boundaries is relevant, for
instance in a plasma or an electrolyte near an electrode with adsorbing
sites. (1, 2) Another situation in which we will focus our attention is in solu-
tions of amphiphathic molecules and ions for example in soap films and
bubbles. Amphiphathic molecules have an hydrophobic tail and an hydro-
philic charged head (usually negative) and, for this reason, when they are
submerged in water they rearrange themselves in such a way as to minimize
the contact of the hydrophobic tails with the surrounding medium. They
can achieve configurations such as bilayers, micelles and vesicles, among
others.

In a previous paper (3) we studied a soap film by modeling it as a
Coulomb system confined in a slab. A soap film can be seen as a system of
amphiphathic molecules in a bilayer configuration with a water inner layer.
The overall neutral system with negatively charged amphiphathic anions
and positive micro-cations (usually Na+) in water was modeled as a two-
dimensional two-component plasma. The two dimensions were in the
breadth of the film not on the surface: we studied a cross section of the
film. Because of the hydrophobicity of their tails, the soap anions prefer to
be in the boundaries of the film. This was modeled by a one-body attrac-
tive short-range external potential acting over them. This means that the
negative particles felt an attractive potential over a small distance near
each boundary. In this sense the negative particles of the system can be
‘‘adsorbed’’ by the boundary.

In ref. 3 we found exact expressions for the density, correlations and
pressure inside the film. By studying the disjoining pressure, we were able
to conclude that the Coulomb interaction plays an important role in the
collapse of a thick soap film to a much thinner film. Actually if a large
number of amphiphathic molecules are in the boundary due to a large
strength of the attractive external potential near the boundary, the system
is always stable. On the other hand if the attractive potential near the
boundary is not strong enough a thick film will not be stable and will
collapse to a thin film.

These results can be compared (qualitatively due to the simplicity of
the model under consideration) to the experimental situation of the transi-
tion of a thick film to a thin black film. These black film phenomena occur
when the soap films width is smaller than visible light wavelength and it
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is seen black. Two types of black films are observed experimentally: the
common black film and the much thinner Newton black film.

It is interesting to know to what extent the results of our previous
work (3) depend on the geometry. Here we study this two-component plasma
system confined in two other geometries, a disk and an annulus. As we
mentioned before, amphiphathic molecules in water can achieve micelles
and vesicles among others configurations. In two dimensions, a cylindrical
micelle can be seen as a disk and a cylindrical vesicle as an annulus. If the
length of the cylindrical micelle or vesicle if much larger that its radius it
is reasonable to assume that the system in invariant in the longitudinal
direction and so we study only a cross section of the system: a disk or an
annulus. The Coulomb interaction is then the two-dimensional Coulomb
potential which is vc(r)=−ln(r/d) for two particles at a distance r of
each other. The length d is an arbitrary length which fixes the zero of the
potential.

Two-dimensional Coulomb systems with log interaction have proper-
ties that are similar to those in three dimensional charged systems with
the usual 1/r potential. They satisfy Gauss law and Poisson equation
in two dimensions. Several universal properties, such as screening effects,
are direct consequences of the harmonic nature of the − ln(r/d) and 1/r
potentials, which are the solutions of the two- and three-dimensional
Poisson equation. Therefore the exact solutions obtained for the 2D models
play an important role in understanding real 3D Coulomb systems.

The rest of this work is organized as follows. In Section 2 we present
in detail the system under consideration and briefly review how this model
can be exactly solved. In Section 3 we compute the grand potential of the
system and the disjoining pressure and study the stability of the system. In
Section 4 we compute the density profiles of the different types of particles
in the system and the adsorbed charge on the boundaries. Finally, we
conclude recalling the main results of the present work.

2. THE MODEL AND METHOD OF SOLUTION

The system under consideration is a two-dimensional system composed
of two types of point particles with charges ± q. Two particles with charges
sq and sŒq at a distance r apart interact with the two-dimensional Coulomb
potential − ssŒq2 ln(r/d) where d is an arbitrary length. This system is
known as the symmetric two-dimensional two-component plasma.

When the Boltzmann factor for the Coulomb potential is written,
the adimensional coulombic coupling constant appears: C=q2/kBT=bq2.
Notice that in two dimensions q2 has dimensions of energy. For a system
of point particles if C \ 2 the system is unstable against the collapse of
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particles of opposite sign, the thermodynamics of the system are not well
defined unless one considers hard-core particles or another regularization
procedure (for instance a lattice model instead of a continuous gas). On the
other hand, if C < 2 the thermal agitation is enough to avoid the collapse
and the system of point particles is well defined. The two-component
plasma is known to be equivalent to the sine-Gordon model and using this
relationship and the results known for this integrable field theory, the
thermodynamic properties of the two-component plasma in the bulk have
been exactly determined (4) in the whole range of stability C < 2. However,
there are no exact results for confined systems for arbitrary C (with the
exception of a Coulomb system near an infinite plane conductor (5) or ideal
dielectric (6) wall).

It is also well-known for some time that when C=2 the sine-Gordon
field theory is at its free fermion point. This means that the system is
equivalent to a free fermion field theory and therefore much more infor-
mation on the system can be obtained. In particular the thermodynamic
properties and correlation functions can be exactly computed even for
confined systems in several different geometries and different boundary
conditions. (7–14) From now on we will consider only the case when C=2.

Since at C=2 a system of point particles is not stable one should start
with a regularized model with a cutoff distance a which can be the diameter
of the hard-core particles or the lattice spacing in a lattice model. (7) The
system is worked out in the grand-canonical ensemble at given chemical
potentials m+ and m− for the positive and negative particles respectively. In
the limit of a continuous model a Q 0 the grand partition function and
the bulk densities diverge. However the correlation functions have a well-
defined limit. In this continuous limit it is useful to work with the rescaled
fugacities (9) m±=2pdebm±/a2 that have inverse length dimensions. The
length m−1 can be shown to be the screening length of the system. (9) If
external potentials V±(r) act on the particles (as in our case) it is useful to
define position dependent fugacities m±(r)=m± exp(−bV±(r)).

Let us briefly review the method of resolution described by Cornu and
Jancovici (8, 9) for the two-component plasma. It will be useful to use the
complex coordinates z=re ih=x+iy for the position of the particles. For
a continuous model, a Q 0, ignoring the possible divergences for the time
being, it is shown in ref. 9 that the equivalence of the two-component
plasma with a free fermion theory allows the grand partition function to be
written as

X=det rR 0 2“z

2“z̄ 0
S−1 Rm+(r) 2“z

2“z̄ m− (r)
Ss (2.1)
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Then defining an operator K as

K=R 0 2“z

2“z̄ 0
S−1 Rm+(r) 0

0 m− (r)
S (2.2)

the grand partition function X can be expressed as

X=det(1+K) (2.3)

The calculation of the grand potential bW=−ln X and the pressure
p=−“W/“V where V is the volume (in a two-dimensional system this
refers to the area), reduces to finding the eigenvalues of K because the
grand potential can be written as

W=−kBT ln D
i

(1+l i) (2.4)

where l i are the eigenvalues of the operator K.
On the other hand, the calculation of the one-particle densities and

correlations reduces to finding a special set of Green functions. If we define
the 2 × 2 matrix

G(r1, r2)=RG++(r1, r2) G+− (r1, r2)

G−+(r1, r2) G− − (r1, r2)
S (2.5)

as the kernel of the inverse of the operator

Rm+(r) 2“z

2“z̄ m− (r)
S (2.6)

then the one-body density and two-body Ursell functions can be expressed
in terms of these Green functions as

rs1
(r1)=ms1

Gs1 s1
(r1, r1), (2.7)

r (2) T
s1 s2

(r1, r2)= − ms1
ms2

Gs1 s2
(r1, r2) Gs2 s1

(r2, r1) (2.8)

where s1, 2 ¥ {+, −} denote the sign of the particles. In polar coordinates
these Green functions satisfy the following set of equations

r m+(r1) e−ih1 r“r1
−

i“h1
r1

s

e ih1 r“r1
+

i“h1
r1

s m− (r1)
s G=d(r1 − r2) I (2.9)

with I being the unit 2 × 2 matrix.
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The above formalism is very general, it can be applied to a variety of
situations. In the case we are interested in, we will consider two geometries
in which the system is confined: a disk of radius R and an annulus of inner
and outer radius R1 and R2 respectively.

The negative particles are supposed to model amphiphathic molecules
and therefore they are attracted to the boundaries of the system while
positive particles are not. This is modeled by an attractive external one-
body potential V− (r) acting on the negative particles near the boundary
while for the positive particles V+(r)=0.

Actually we will consider two models for this potential. In the first
model (model I) the fugacity m− (r) for the negative particles reads, for the
disk geometry,

m− (r)=me−bV− (r)=m+ad(r − R) (2.10)

inside the disk, while m+=m is constant. Outside the disk r > R2 both
fugacities vanish. In the annulus geometry,

m− (r)=m+a1d(r − R1)+a2d(r − R2) (2.11)

inside the annulus. The coefficients a, a1, and a2 measure the strength of
the attraction to the walls. In the following we will call these coefficients
adhesivities.

In the second model (model II) that we will eventually consider the
external potential V− (r) is a step function with a range D of attraction
near the boundary. This model allows us to obtain valuable information
regarding the frontier regions. Actually we will report here only the main
results for the annulus geometry with model II in Section 4.3, further
results on this model on the disk geometry can be found in ref. 15.

In the two following sections we will apply the method presented here
to obtain the grand potential and the density profiles of the system.

3. THE PRESSURE

3.1. The Grand Potential

To find the pressure of the confined Coulomb system we proceed first
to compute the grand potential. As shown in Section 2 the grand potential
W is given by Eq. (2.4) in terms of the eigenvalues of K. The eigenvalue
problem for K with eigenvalue l and eigenvector (k, q) reads

m− (r) q(r)=2l“z̄k(r) (3.1a)

m+(r) k(r)=2l“zq(r) (3.1b)
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These two equations can be combined into

Dq(r)=
m+(r) m− (r)

l2 q(r) (3.2)

We now detail the computation of the grand potential for the case of a
Coulomb system confined in a disk. The annulus geometry follows similar
calculations.

Within model I, the fugacities are given by Eq. (2.10). Replacing these
fugacities into the eigenvalue problem equations (3.1) we find that q(r) is a
continuous function while k(r) is discontinuous at r=R due to the Dirac
delta distribution in m− (r). The discontinuity of k is given by

k(R+, h) − k(R−, h)=
a

l
q(R, h) e−ih (3.3)

Defining k=m/l, inside the disk r < R, q(r) obeys the equation

Dq(r)=k2q(r) (3.4)

with solutions of the form q(r, h)=Ale ilhIl(kr) and k(r, h)=Ale i(l −1) hIl − 1(kr)
where Il is a modified Bessel function of order l. Outside the disk
m− =m+=0 and the corresponding solutions to Eqs. (3.1) are that k is
analytic and q anti-analytic, namely, q(r)=Ble ilhr−l and k(r)=Ble i(l − 1) hr l − 1.
Therefore, in order to have vanishing solutions at r Q . it is necessary that
k(R+, h)=0 if l \ 1 and q(R, h)=0 if l [ 0.

Using these boundary conditions together with the continuity of q at
R and the discontinuity (3.3) of k at R gives the eigenvalue equation

Il
1mR

l
2=0 if l [ 0 (3.5a)

aIl
1mR

l
2+Il − 1

1mR
l
2=0 if l \ 1 (3.5b)

The product appearing in Eq. (2.4) can be partially computed by recogniz-
ing that the l.h.s. of the eigenvalue equation (3.5) for arbitrary l can
be written as a Weierstrass product. (3, 12, 14, 16) Let us introduce the analytic
functions

f (−)
l (z)=Il(mzR) l! 1 2

mzR
2 l

(3.6)

f (+)
l (z)=[aIl(mzR)+Il − 1(mzR)](l − 1)! 1 2

mzR
2 l − 1

(3.7)
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By construction the zeros of f (+)
l are the inverse of the eigenvalues l for

l > 0 and the zeros of f (−)
−l are the inverse eigenvalues l for l [ 0.

Furthermore, since f (±)
l (0)=1, f − (±)

l (0)=0, and f (±)
l (z) is an even func-

tion it can be factorized as the Weierstrass product

f (±)
l (z)=D

l l

11 −
z

l−1
l

2 (3.8)

where the product runs over all l l solutions of Eq. (3.5) for a given l. Then
we can conclude that the grand potential (2.4) is given by

bW= C
.

l=0
ln f (−)

l (−1)+ C
.

l=1
ln f (+)

l (−1) (3.9)

After shifting by one the index in the second sum and rearranging the
expression we find the final result for the grand potential

WD=WD
hw+WD

at (3.10)

with

bWD
hw=−2 C

.

l=0
ln 5l! 1 2

mR
2 l

Il(mR)6 (3.11)

which is the grand potential for a two-component plasma in a disk with
hard wall boundaries (11) (a=0) and

bWD
at=− C

.

l=0
ln 51+a

Il+1(mR)
Il(mR)

6 (3.12)

is the contribution due to the attractive potential near the walls.
Now we turn our attention to the case of the Coulomb system

confined in an annulus of inner radius R1 and outer radius R2. The cal-
culation of the grand potential follows similar steps as above. One should
solve the Laplacian eigenvalue problem with the appropriate boundary
conditions given by the continuity of q and the discontinuity of k at R1

and R2. After some straightforward calculations the final result for the
grand potential is

WA=WA
hw+WA

at (3.13)
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with

bWA
hw=−2 C

.

l=0
ln 5mR l+1

1

R l
2

(I (2)
l K (1)

l+1+I(1)
l+1K (2)

l )6 (3.14)

and

bWA
at= − C

.

l=0
ln 51+a1

I (2)
l K (1)

l − K (2)
l I (1)

l

I (2)
l K (1)

l+1+I(1)
l+1K (2)

l

6

− C
.

l=0
ln 51+a2

I (2)
l+1K (1)

l+1 − K (2)
l+1I (1)

l+1

I (2)
l K (1)

l+1+I(1)
l+1K (2)

l

6 (3.15)

where I (1)
l =Il(mR1), I (2)

l =Il(mR2) and the same convention for the other
Bessel functions. The first term WA

hw is the grand potential for a two-
dimensional two-component plasma confined in an annulus (11) with hard
wall boundaries2 (a=0) and the second term WA

at is the contribution to the

2 Equation (4.16) of ref. 11 for the grand potential in an annulus with hard wall boundaries is
incorrect, however the equation above (4.16) is correct and gives our result (3.14) for the
grand potential.

grand potential due to the attractive nature of the walls.
It should be noted that all sums (3.11), (3.12), (3.14), and (3.15) above

are divergent and should be cutoff to obtain finite results. This is due to the
fact that the two-component plasma of point particles is not stable against
the collapse of particles of opposite sign for bq2 \ 2 and a short-distance
cutoff a should be introduced, a can be interpreted as the hard-core diam-
eter of the particles. If R is the characteristic size of the system (for
instance the radius of the disk in the disk case) then l/R is a wave-length
and the short-distance cutoff a gives an ultraviolet cutoff 1/a. Then the
cutoff for l (say N) in the sums should be chosen of order R/a. (9, 11)

3.2. Finite-Size Corrections

It is instructive to study the behavior of the grand potential when the
system is large. It has been known for some time that two-dimensional
Coulomb systems in their conducting phase have a similar behavior to
critical systems. (11, 12) In particular the grand potential of a two-dimensional
Coulomb system confined in a domain of characteristic size L has a large-L
expansion

bW=AL2+BL+
q

6
ln L+O(1) (3.16)

Confined Coulomb Systems with Adsorbing Boundaries 743



similar to the one predicted by Cardy (17, 18) for critical systems. The first two
terms are respectively the bulk grand potential and the surface contribution
to the grand potential (the surface tension) and are non-universal. The
logarithmic term is a universal finite-size correction to the grand potential,
it does not depend on the microscopic detail of the system, only on the
topology of the manifold where the system lives through the Euler charac-
teristic q. For a disk q=1 and for an annulus q=0.

It is interesting to verify if this finite-size expansion holds for the
systems studied here, in particular if the finite-size correction is modified by
the special attractive nature of the walls considered here.

Let us first consider the case of the disk geometry. We choose to cutoff
the sums (3.11) and (3.12) to a maximum value for l equal to R/a and the
results given here are for a Q 0. The finite-size expansion for large-R of the
hard wall contribution to the grand potential has already been computed in
ref. 11 with the result

bWD
hw=−bpbpR2+bchw2pR+1

6 ln(mR)+O(1) (3.17)

where the bulk pressure pb is given by

bpb=
m2

2p
11+ln

2
ma

2 (3.18)

and the surface tension chw for hard walls is given by

bchw=m 11
4

−
1

2p
2 (3.19)

We only need to compute the large-R expansion of (3.12). This can be done
expressing the Bessel function Il+1(mR) as Il+1(mR)=I−

l(mR)+lIl(mR)/(mR),
using the uniform Debye expansions (19) of the Bessel functions valid for
large argument

Il(z) ’
eg

`2p(l2+z2)1/4
51+

3t − 5t3

24l
+ · · · 6 (3.20a)

I −

l(z) ’
(l2+z2)1/4 eg

`2p z
51 −

9t − 7t3

24l
+ · · · 6 (3.20b)
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with g=`l2+z2+l ln( z

l+`l2+z2) and t=l/`l2+z2, and using the Euler–
McLaurin formula to transform the summation into an integral

C
N

l=0
f(l)=F

N

0
f(x) dx+1

2 [f(N)+f(0)]+ 1
12 [fŒ(N) − fŒ(0)]+ · · ·

(3.21)

After some calculations, taking first the limit N Q ., keeping only the non-
vanishing terms, then taking the limit R Q . and replacing N by R/a, we
find that (3.12) contributes only to the surface tension giving for the grand
potential the final result

bWD=−bpbpR2+2pRbc+1
6 ln(mR)+O(1) (3.22)

where the surface tension is now given by

bc=−
m
4p

5a ln
2

ma
+1 − p+a+

1 − a2

a
ln(a+1)6 (3.23)

We recover as expected the surface tension obtained in ref. 3 for the same
system but confined in a slab.

The universal logarithmic finite-size correction (1/6) ln(mR) is still
present and it is not modified by the presence of the attractive boundaries.

For the annulus geometry we are interested in the limit R1 Q . and
R2 Q . with R2/R1 finite. We proceed as above, using also this time the
Debye expansion for the Bessel functions (19)

Kl(z) ’
`p e−g

`2(l2+z2)1/4
51 −

3t − 5t3

24l
+ · · · 6 (3.24a)

K −

l(z) ’
− `p(l2+z2)1/4 e−g

`2 z
51+

9t − 7t3

24l
+ · · · 6 (3.24b)

Using (3.20) and (3.24) one can notice that inside the logarithm in (3.14)
the term I (1)

l+1K (2)
l is exponentially small compared to I (2)

l K (1)
l+1 since

R2 − R1 Q .. Also in the contribution from the attractive boundaries
(3.15) the dominant terms are

bWA
at ’ − C

N

l=0
ln 51+a1

K (1)
l

K (1)
l+1

6− C
N

l=0
ln 51+a2

I (2)
l+1

I (2)
l

6 (3.25)

Then, after some calculations we get the final result

bWA=−bpbp(R2
2 − R2

1)+bc12pR1+bc22pR2+O(1) (3.26)
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The surface tension for each boundary is given by

bci=−
m
4p

5a i ln
2N
R i

+1 − p+a i+
1 − a2

i

a i
ln(a i+1)6 (3.27)

where i=1 for the inner boundary and i=2 for the outer boundary. The
cutoff N should be chosen (11) as R/a where here R=R2x−x2/(1 − x2) with
x=R1/R2 in order to insure extensivity and recover for the bulk pressure
pb the same expression (3.18) as before.

In the limit a Q 0 the leading term of the surface tension is the same as
in the slab and disk geometry

bc ’ −
am
4p

ln
2

ma
(3.28)

for a wall with adhesivity a.
In Eq. (3.26) we do not find any logarithmic finite-size correction.

There are some terms of the form ln R2/R1 which are order 1 because
R2/R1 is finite. This is in accordance with the expected formula (3.16) for
an annulus where the Euler characteristic is q=0. Here again the special
attractive nature of the walls does not modify the universal finite-size
correction.

As a conclusion to this part we might say that the logarithmic correc-
tion is really universal, not only it does not depend on the microscopic
constitution of the system but also it is insensitive to the existence of a
short-range one-body potential near the walls.

3.3. The Disjoining Pressure

Let us first detail the case of the disk geometry. The pressure p is given
in terms of the grand potential W by

p=−
1

2pR
“W

“R
(3.29)

Using Eq. (3.10) together with Eqs. (3.11) and (3.12) gives

p=phd+patd (3.30)

where phd is the pressure for a disk with hard walls boundaries given by

bphd=
m
pR

C
.

l=0

Il+1(mR)
Il(mR)

(3.31)
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and patd is the contribution to the pressure due to the attractive potential
near the walls and it is given by

bpatd=
a

2pR2 C
.

l=0

mR[I2
l (mR) − I2

l+1(mR)] − (2l+1) Il+1(mR) Il(mR)
Il(mR)[Il(mR)+aIl+1(mR)]

(3.32)

To study the stability of the system against an external applied pres-
sure one should study the disjoining pressure pd=p − pb defined as the
difference between the pressure of the system and the pressure of an infinite
system (the bulk pressure). Let us first consider the case a=0. A proper
way to subtract the bulk pressure from expression (3.31) is by using the
equation of state of the infinite system (9)

bpb=
1
2

nb+
m2

4p
(3.33)

where nb is the bulk total density. A simple scaling argument shows that
for bq2 < 2 the equation of state of the two-dimensional two-component
plasma is (20)

bpb=[1 − (bq2/4)] nb (3.34)

For bq2=2, the case considered here, the introduction of a cutoff a is
needed in order to avoid divergences but this breaks the scale invariance
of the two-dimensional logarithmic Coulomb potential giving rise to the
anomalous term (m2/4p) in the equation of state. Notice that when the
cutoff a Q 0 both pb and nb diverge and we have bpd/nb=1/2 in accor-
dance to the general equation of state (3.34).

Formally, the bulk density can be written as (see next section for
details)

nb=
m2

p
C
+.

l=−.

Il(mR) Kl(mR)

=
m2

p
5I0K0+2 C

.

l=1
IlKl

6 (3.35)

In the above expression and below the omitted argument of the Bessel
functions is mR unless stated otherwise. On the other hand using the
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Wronskian (21) IlKl+1+Il+1Kl=(1/mR) the hard disk pressure (3.31) can
be formally written as

bphd=
m2

p
5 C

.

l=0

I2
l+1Kl

Il
+ C

.

l=1
IlKl

6 (3.36)

Then the disjoining pressure for a=0 is given by

b(phd − pb)=bphd, disj=
m2

p
5 C

.

l=0

I2
l+1Kl

Il
−

I0K0

2
−

1
4
6 (3.37)

Although the pressure phd and the bulk pressure pb are divergent when the
cutoff a vanishes, the disjoining pressure phd, disj in the case a=0 proves to
be well-defined for a Q 0 and the series (3.37) is convergent.

A plot of the disjoining pressure phd, disj for a hard wall disk as a func-
tion of the radius R is shown in Fig. 1. Notice that phd, disj is an increasing
function of R and it is always negative. This shows that in the absence of
the attractive potential on the walls the systems is always unstable for any
radius R. This is a common feature of the disk geometry with the slab
geometry studied in our previous work. (3) The system without any attrac-
tive potential on the boundary (a=0) is naturally unstable.

For a ] 0, the disjoining pressure pd is given by

pd=phd, disj+patd (3.38)

with patd given by Eq. (3.32). Before proceeding one should be aware of an
important fact. Although the first term phd, disj is finite when the cutoff

Fig. 1. The disjoining pressure phd, disj for the disk in the case of non-attractive boundaries
(a=0) as a function of the radius R.
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a Q 0 the second term on the other hand is divergent when a Q 0. The sum
in Eq. (3.32) should be cutoff to a upper limit N=R/a as it was done in
the preceding section. Rigorously speaking when a Q 0 the dominant term
for the disjoining pressure is patd. For large radius R, from last section
results (3.22) and (3.28) on the finite-size corrections we can deduce the
dominant term of the disjoining pressure when a Q 0

bpd ’ −
1
R

bc

’
am
4pR

ln
2

ma
(3.39)

This term is always positive and is a decreasing function of R indicating
that the system is always stable.

This is an important difference between the slab geometry studied in
ref. 3 and the present case of the disk. In the slab geometry the disjoining
pressure is always finite for a=0 and any value of a. For a slab of width W,
the large-W expansion of the grand potential per unit area w reads (3)

w=−pbW+2c+O(e−mW) (3.40)

Then the pressure p=“w/“W does not contain any contribution from the
surface tension. On the other hand in the disk geometry considered here
the existence of the curvature makes the surface tension c very relevant for
the disjoining pressure (see Eq. (3.39)) and since c diverges logarithmically
with the cutoff it plays a dominant role in the stability of the system.

Let us now consider a small but non-zero cutoff a. It is expected that
the results of our theory in that case should be close to the ones of a
model of small hard-core particles of diameter a. Then there will be a
competition between the natural unstable behavior of the case without
attractive potential (a=0) and the attractive part to the pressure patd

which is stabilizing.
Figure 2 shows several plots of the disjoining pressure pd as a function

of the radius R for three special values of the adhesivity a=0.15, 0.21, and
0.3 for a fixed cutoff ma=10−3. These three plots show three characteristic
regimes in which the system can be.

For large values of the adhesivity, for example the case a=0.3 shown
in Fig. 2, the disjoining pressure is always positive and a decreasing func-
tion of the radius R. The system is stable for all values of the radius R.

The case a=0.15 (small values of the adhesivity) shown in Fig. 3
shows a system unstable for large values of the radius R. There exists a
‘‘critical’’ radius Rc for which “pd/“R|R=Rc

=0. If R > Rc, the disjoining
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Fig. 2. The disjoining pressure pd for the disk as a function of the radius R for
a=0.15, 0.21, and 0.3 from bottom to top.

pressure is an increasing function of the radius R. A very large disk R Q .

is marginally stable and will collapse to a disk of smaller radius Rg where
Rg is the radius corresponding to pd=0.

For a=0.21 (intermediate values of the adhesivity) there is a first
order transition (collapse) from a large (but finite) disk (radius Rb ) to
smaller disk with radius Ra (see Fig. 4).

Two of the three regimes illustrated here, small adhesivity (for
example a=0.15) and large adhesivity (for example a=0.3), also occur for
the slab geometry studied in ref. 3. In that case they were separated by the
special value a=ac=1. The disk case considered here is however more
rich since there is also a crossover regime between the two, for intermediate
values of a (for example a=0.21), with the possibility of stable large

Fig. 3. The disjoining pressure pd for the disk as a function of the radius R for a=0.15. The
dashed region for R > Rg is not physical.
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Fig. 4. The disjoining pressure pd as a function of the radius R for a=0.21. The theoretical
result for the pressure shows a non-physical region (dashed line). The correct pd vs. R curve
(full line) is obtained by a Maxwell construction.

radius R disks, a forbidden (unstable) intermediate range of radius R and
then again stable small disks.

To conclude this section let us mention that in the annulus geometry
the situation will be similar to the disk one. In that case one can consider
the pressure on the inner boundary or the pressure on the outer boundary.
For both pressures the dominant term when the cutoff a Q 0 will be given
in terms of the surface tension c as in Eq. (3.39). Then in the strict limit
a Q 0 the annulus geometry will be stable if a > 0 as in the disk case. Con-
sidering a small but non-zero cutoff a will lead to a similar discussion as in
the disk with different regimes some of them exhibiting a collapse.

4. THE DENSITY PROFILES

In this section, we study the densities of the Coulomb system confined
inside a disk and inside an annulus. The densities can be obtained by com-
puting the Green functions introduced in Section 2. First we will solve and
extensively study model I for the disk then the annulus. Then we will
briefly consider the results that can be obtained using model II.

4.1. The Disk

In the disk geometry, for model I, the fugacity m− (r) is given by
Eq. (2.10). From Eq. (2.9), when r2 ] R, we see that G− − and G−+ are con-
tinuous for r1=R. However because of the Dirac delta distribution in the
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definition of m− (r) the functions G+− and G++ are discontinuous at r1=R.
The discontinuity can be obtained from Eq. (2.9) if r2 ] r1:

G++ (r1=R−, r2) − G++ (r1=R+, r2)=ae−ih1G− + (r1=R, r2) (4.1)

If both points r1 and r2 are inside the disk but not on the boundary
then Eq. (2.9) lead to a Helmoltz equation for G++ and for G− −

[m2 − D] G± ±(r1, r2)=md(r1 − r2) (4.2)

and the other Green functions can be obtained from

e ± ih1

m
1 − “r1

+
i
r1

“h1
2 G± ±(r1, r2)=G+ ± (r1, r2) (4.3)

If r1 is outside the film while r2 is fixed inside the film m+(r1)=
m− (r1)=0, the Gs1 s2

that satisfy Eq. (2.9) are

G++ (r1, r2)= C
+.

l=−.

Cl(r2, h2)(r1e ih1) l (4.4)

G− + (r1, r2)= C
+.

l=−.

Dl(r2, h2)(r1e−ih1)−l (4.5)

So, in order to have finite solutions at r1=. it is necessary that for r1 > R

Cl(r2, h2)=0 for l \ 0

Dl(r2, h2)=0 for l [ 0
(4.6)

Eqs. (4.1) and (4.6) are the boundary conditions that complement the dif-
ferential equations (4.2) and (4.3) for the Green functions.

Solving Eq. (4.2), we arrive to the following expressions for the Green
functions for 0 [ r1, 2 < R:

G++(r1, r2)=
m
2p

K0(m |r1 − r2 |)

+
m
2p

C
+.

l=0
e il(h1 − h2 ) 5Kl

Il
Il+1(mr1) Il+1(mr2)

+
aKl+1 − Kl

aIl+1+Il
Il(mr1) Il(mr2)6 (4.7)
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and

G− − (r1, r2)=
m
2p

K0(m |r1 − r2 |)

−
m
2p

C
+.

l=0
e il(h1 − h2 ) 5Kl

Il
Il(mr1) Il(mr2)

+
aKl+1 − Kl

aIl+1+Il
Il+1(mr1) Il+1(mr2)6 (4.8)

with Il meaning Il(mR) and the same convention for the Bessel function Kl.
The one-particle densities are given in terms of these Green functions

as rs(r)=ms(r) Gss(r, r). As we explained in Section 2 the continuous limit
model presents divergences in the expressions of the densities. This is seen
in the term K0(mr12) that diverges logarithmically as r12=|r1 − r2 | Q 0. So
we impose a short distance cutoff a. One can think that particles are disks
of diameter a, so the minimal distance between particles is a.

The first term in Eqs. (4.7) and (4.8) gives the bulk density rb, the
density of the unbounded system as calculated in ref. 9. For a Q 0

r+
b =r−

b =rb=
m2

2p
K0(ma) ’

m2

2p
5ln

2
ma

− c6 (4.9)

where c 4 0.5772 is the Euler constant. In the second terms of Eqs. (4.7)
and (4.8) the sum can eventually diverge when r1=r2=r for certain values
of r (in the boundaries) so we should impose a cutoff |l| < N=R/a as
it has been done in the expressions of the pressure and grand-potential
obtained in the last section.

Because of the form (2.10) of m− (r), the negative density can be
written as

r− (r)=11+
a

m
d(r − R)2 rg

− (r) (4.10)

where rg
− can be seen as the density of non-adsorbed particles. For the

positive particles r+=rg
+. Finally we have

rg
+(r)=rb+

m2

2p
C
.

l=0

5Kl

Il
I2

l+1(mr)+
aKl+1 − Kl

aIl+1+Il
I2

l (mr)6 (4.11a)

rg
− (r)=rb −

m2

2p
C
.

l=0

5Kl

Il
I2

l (mr)+
aKl+1 − Kl

aIl+1+Il
I2

l+1(mr)6 (4.11b)

Confined Coulomb Systems with Adsorbing Boundaries 753



The non-adsorbed charge density rg=rg
+ − rg

− can be obtained from
the above expression and using the Wronskian of the Bessel functions
IlKl+1+Il+1Kl=1/mR,

rg(r)=
am2

2pR
C
.

l=0

I2
l+1(mr)+I2

l (mr)
(aIl+1+Il) Il

(4.12)

Finally, the total charge density

r(r)=r+(r) − r− (r)

=r+(r) −11+
a

m
d(r − R)2 rg

− (r)

=rg(r) − s− d(r − R) (4.13)

has a non-adsorbed part rg(r) and a adsorbed ‘‘surface’’ charge density in
the boundary

s− =
a

m
rg

− (R) (4.14)

This surface charge density s− comes from the d(r − R) part of the negative
charge density. Writing formally the bulk part of the density as rb=
(m2/2p) ;l ¥ Z IlKl one can obtain the following expression for s− from
Eqs. (4.14) and (4.11b)

s− =
a

2pR
C
.

l=0

Il+1

aIl+1+Il
(4.15)

Actually the adsorbed charge density should obey two special rela-
tions. The first is a sum rule that expresses the global electro-neutrality of
the system

R s− =F
R

0
rg(r) r dr (4.16)

Using a known indefinite integral (21) for products of Bessel functions, this
sum rule (4.16) is immediately shown to be satisfied.

On the other hand the adhesivity a can be thought as a sort of fugacity
that controls the number of adsorbed particles (1) and one can obtain the
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total number of adsorbed particles 2pRs− from the grand potential W by
using the usual thermodynamic relation

2pR s− =−ab
“W

“a
(4.17)

This relationship is also immediately shown to be satisfied from the
expression (3.12) for WD

at, the part of the grand potential that depends on a.
For a large disk, R Q ., the dominant part of the grand potential that

depends on a is the surface tension c given by Eqs. (3.23) and (3.28). Then
we have

s− =−ba
“c

“a
(4.18)

a relation already shown to be true in ref. 3 for the same system near a
plane attractive hard wall. Using Eq. (3.23) into Eq. (4.18) gives explicitly

s− =
m
4p

5a ln
2

ma
−

a2+1
a

ln(a+1)+16 (4.19)

Thus recovering a known result from ref. 3. This result can, of course, also
be obtained directly from Eq. (4.15) in the limit of large-R using the Debye
expansions (3.20) of the Bessel functions.

4.2. The Annulus

For the annulus geometry with a delta distribution modeling the
external attractive potential (model I), we follow the same reasonings as for
the disk geometry. The solution to Eq. (4.2) for R1 < r < R2 is of the form

Gss(r1, r2)=
m
2p

5K0(m |r1 − r2 |)

+ C
+.

l=−.

e ilh12[AlIl(mr1) Il(mr2)+BlKl(mr1) Kl(mr2)

+Cl[Il(mr1) Kl(mr2)+Il(mr2) Kl(mr1)]]6 (4.20)

where we defined h12=h1 − h2. The coefficients Al, Bl, and Cl, that are
given in terms of modified Bessel functions evaluated at R1 and at R2, are
too long to reproduce here but can be found in an extended version of the
present manuscript available online. (23)
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The individual densities are obtained by putting r1=r2=r in the
above expressions since rs(r)=ms(r) Gss(r, r). The charge density can be
written again as

r(r)=rg(r) − s (1)
− d(r − R1) − s (2)

− d(r − R2) (4.21)

with a non-aborbed part rg(r) and a surface density

s (1, 2)
− =(a1, 2/m) rg

− (R1, 2) (4.22)

of adsorbed negative particles in R1 and R2 respectively.
The adsorbed charge density in each boundary can be computed by

replacing G− − (R1, 2, R1, 2) from Eq. (4.20) into Eq. (4.22) or by using the
thermodynamic relation

2pR1, 2 s (1, 2)
− =−a1, 2 b

“WA

“a1, 2
(4.23)

Either way the result is the same as expected

s (1)
− =

a1

2pR1
C
.

l=0

I (2)
l K (1)

l − K (2)
l I (1)

l

D (1)
l

(4.24a)

s (2)
− =

a2

2pR2
C
.

l=0

I (2)
l+1K (1)

l+1 − K (2)
l+1I (1)

l+1

D (2)
l

(4.24b)

with

D (1)
l =I (2)

l (a1K (1)
l +K(1)

l+1) − K (2)
l (a1I (1)

l − I (1)
l+1) (4.25a)

D (2)
l =I (1)

l+1(a2K (2)
l+1 − K (2)

l ) − K (1)
l+1(a2I (2)

l+1+I(2)
l ) (4.25b)

Using some known (22) indefinite integrals of products of modified Bessel
functions, one can verify that the electroneutrality sum rule

F
R2

R1

rg(r) r dr=R1 s (1)
− +R2 s (2)

− (4.26)

is satisfied. The details of these calculations can be found in the extented
version of this manuscript. (23)

Figure 5 shows a plot of the charge density r(r) for an annulus with
inner radius R1=1/m and outer radius R2=5/m for a1=a2=0.5 and
a1=a2=1. In both figures on can see a positive layer of charge in each
boundary screening the adsorbed negative surface charge densities s (1, 2)

− . As
a1, 2 increases the adsorbed charge increases and so does the positive layer.
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Fig. 5. The charge density profile r(r) for an disk of inner radius R1=1/m and outer radius
R2=5/m. The adhesivities in each boundary have been chosen equal a1=a2=a. The upper
curve correspond to a=1 while the lower one to a=0.25.

Although it is not perfectly clear in Fig. 5 there is actually slightly more
adsorbed surface charge density in the inner boundary that in the outer.
This can be seen in Fig. 6 that shows the difference between the adsorbed
surface charge in the inner boundary and the surface charge in the outer
one, s (1)

− − s (2)
− , as a function of a. Figure 6 clearly shows that s (1)

− > s (2)
−

if a1=a2. On the other hand the total charge on the inner boundary is
smaller that the total charge on the outer boundary: 2pR1 s (1)

− < 2pR2 s (2)
− .

This can be seen directly from Eqs. (4.24). If a1=a2=a, each term in the
series of the difference R1 s (1)

− − R2 s (2)
− from Eqs. (4.24) is of the form

a

D (1)
l D (2)

l

(bl − bl+1) (4.27)

where bl=K(1)
l I (2)

l − K (2)
l I (1)

l . The sequence (bl)l ¥ N has the property of
being monotonically increasing with l. Then we conclude R1 s (1)

− < R2 s (2)
− .

Fig. 6. The difference between the surface charge in the inner boundary and the surface
charge in the outer one s (1)

− − s (2)
− as a function of a for an annulus of inner radius R1=1/m

and outer radius R2=5/m.
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4.3. Model II

We now briefly consider model II and some of its results in the
annulus geometry. In model II, we can distinguish three regions: the inner
border R1 < r1 < R1+D (region 1), the bulk of the film R1+D < r1 <
R2 − D (region 2) and the outer border R2 − D < r1 < R2 (region 3). We
define the position dependent fugacities as

m+(r1)=m, in all regions 1, 2, and 3 (4.28a)

m− (r1)=˛m2 if r1 ¥ region 1

m if r1 ¥ region 2

m2 if r1 ¥ region 3

(4.28b)

The fugacity in the border regions is m2=m exp(−bU− ) where U− < 0
is the value of the external potential V− (r) near the boundary. Notice that
m2 > m. It is clear that model I is the limit of model II when D Q 0 and
m2 Q . with the product m2D=a finite.

For this model II, it is useful to use a symmetrization procedure
explained in ref. 9. Using this procedure it turns out that in regions 1 and 3
the important parameter is m0=(mm2)1/2 instead of the individual fugacities.

In the regions of interest, the solution for the Green functions is again
of the form (4.20) but with m replaced by m0 in the border regions 1 and 3.
The explicit expression of the coefficients are now even longer that for
model I and will not be reported here, (15) however we show in Fig. 7 a plot
of the charge density profile for two values of m2, m2=16m and m2=4m.

Fig. 7. The charge density profile for an annulus with inner radius R1=1/m, outer radius
R2=5/m in model II. The width of the borders are D=0.5/m. The fugacity in the border
regions is: for the solid line curve m2=16m corresponding to a value of m0=4m and for the
dashed line curve m2=4m corresponding to a value of m0=2m. The cutoff in the sums of
Bessel functions in the expression of the density has been chosen as N=100.
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The discontinuity of the charge density profile near the interfaces is
due to the fact that the density profile of the negative particles is discon-
tinuous there. This is expected for the negative particles since the potential
V− (r) is discontinuous across the interfaces. In general for a fluid with
density n(x) near a planar interface characterized by an external potential
Vext(x) eventually discontinuous at x=0 the y-function exp(bVext(x)) n(x)
is continuous. (24)

There is a higher density of particles (both negative and positive) in
the borders that in the bulk: for higher values of the fugacity m2 in the
border (the external potential V− (r) is more attractive), the density in the
borders is higher. In region 2, the density far from the interfaces is close to
the bulk value (4.9). In the borders, away from the interfaces both densities
r+(r) and r− (r) try to be close to the new bulk value given by Eq. (4.9)
replacing m by m0. Due to the natural tendency of the system to be electri-
cally neutral, the positive particles try to follow the negative ones so the
system is not locally charged. However at the interfaces r=R1+D and
r=R2 − D there remains a non-neutral charge density that can be seen in
Fig. 7. Actually one can see in Fig. 7 a double charged layer. Inside the
border region (1 or 3) there is a negative charge density layer and outside
the border, in the bulk region 2, a positive layer, the same one that was
previously observed with model I in Fig. 5. These double layers have a
thickness of order m−1 for the positive layer in region 2 and m−1

0 for the
negative layer in regions 1 and 3.

5. SUMMARY AND PERSPECTIVES

The present solvable model studied here gave us interesting informa-
tion about the behavior of confined Coulomb systems with attractive
boundaries. This system has an induced internal charge on the boundary
which is created by an external potential which is not of electrical nature.
This potential only acts on the negative particles, while the positive par-
ticles are unaffected. This is not the usual situation that has been studied
extensively in the past, where the system is submitted to electrical forces
due to possible external charges.

First, we found that large systems exhibit the same finite-size correc-
tions that for systems without attractive boundaries, confirming again the
universal nature of these finite-size corrections. Studying the disjoining
pressure we found that the attractive boundaries have a stabilizing effect.
This was noticed also in our previous work, (3) however the curvature in the
present case is very important. It makes the surface tension to be the pre-
dominant contribution to the disjoining pressure, as opposed to the slab
geometry. Then, we conclude that the curvature has also a stabilizing effect
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on the system in comparison to the slab geometry in which the system can
be unstable for low values of the adhesivity.

The study of the density profiles gives information about the structure
of the system. As expected, there are some adsorbed charges on the
boundary and these are screened by a positive layer of charge inside the
system. We were able to check explicitly an electro-neutrality sum rule and
a few relations that the adsorbed charge in the boundary satisfy.

It would be interesting to know what features of the present model are
universal and which are not. A step toward answering this question can be
obtained by studying another solvable model of Coulomb system, the one-
component plasma. A preliminary study of this system was done in ref. 15
and this will be the subject of a future paper.
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